ChatGPT 股票公式 ChatGPT 分析股市
淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】
来源丨元宇宙简史
作者丨元宇宙简史编辑 Eco
【元宇宙导读】据彭博社报道,在本月发表的两篇新论文显示,ChatGPT 已可解读美联储声明中的鹰派或*立场,并可根据头条新闻预测股价走势。
根据最近发表的两篇新论文显示,ChatGPT已可解读美联储声明中的鹰派或*立场,并可根据头条新闻预测股价走势。
美联储政策声明是美国联邦储备委员会(FOMC)每隔六周举行一次会议后发布的一份文件,概述了美国货币政策的目标、方向和措施。这份声明对于金融市场和经济活动有着重要的影响,因为它反映了美联储对于经济形势、通胀、就业和利率的看法和预期。
金融分析师和投资者通常会对美联储政策声明进行仔细的分析,以判断美联储的立场是鹰派还是*。
鹰派是指倾向于提高利率以抑制通胀的立场,而*是指倾向于降低利率以刺激经济增长的立场。根据美联储的立场,市场可能会出现不同的反应,例如股票、债券、货币和商品等资产价格的波动。
然而,解读美联储政策声明并不是一件容易的事情,因为声明通常使用了一种谨慎、模糊和微妙的语言,以避免引起市场过度反应或误解。因此,需要对声明中的每一个词、短语和句子进行细致的比较和解释,以捕捉到美联储可能做出的微小而重要的变化。
在本月发表的一篇新论文中,来自OpenAI的研究人员展示了ChatGPT能够完成这样一项任务。他们使用了ChatGPT基于GPT-4的版本,并将其与一个人类基准进行了比较。人类基准是指一个由经验丰富的央行分析师组成的团队,他们能够对美联储政策声明进行专业的分类和解释。
除了解读美联储政策声明,ChatGPT 还能够根据头条新闻预测股价走势。这是另一篇本月发表的新论文中展示的功能。
在这篇论文中,研究人员使用了Kaggle上的一个数据集,包含了从2008年到2016年期间的每日头条新闻和道琼斯工业平均指数(DJIA)的收盘价。研究人员的目标是根据当日的头条新闻来预测第二天的DJIA的涨跌。
研究人员使用了GPT-3.5的版本,并将其与两个基准模型进行了比较。一个是基于逻辑回归的机器学习模型,另一个是基于LSTM的深度学习模型。研究人员使用了80%的数据作为训练集,10%的数据作为验证集,10%的数据作为测试集,并使用了准确率、精确率、召回率和F1分数等指标来评估模型的性能。
研究结果显示,ChatGPT在所有指标上都优于基准模型,表明它能够更好地捕捉新闻标题中的情感和语义信息,并根据此来预测股价走势。例如,在测试集上,ChatGPT的准确率为56.8%,而逻辑回归模型和LSTM模型的准确率分别为51.4%和53.4%。
研究人员认为,ChatGPT能够完成这样一项任务的原因有以下几点:一是ChatGPT基于 GPT-3.5,拥有强大的语言理解和生成能力;二是ChatGPT能够利用其大规模的预训练数据,包括各种类型的新闻和金融信息;三是ChatGPT能够根据不同的新闻标题生成不同的语言风格和情感倾向,从而反映出市场情绪。
论文还进一步分析了ChatGPT根据新闻标题预测的股价后续走势与统计数据之间的关系。研究发现,ChatGPT预测的股价涨跌与DJIA的实际涨跌幅度、成交量、波动率等指标有着显著的相关性,表明ChatGPT能够正确分析消息的含义,并对市场反应有一定的预判能力。
严正声明:本文为元宇宙简史原创,未经授权禁止转载!内容仅供参考交流,不构成任何投资建议。任何读者若据此进行投资决策,风险自担。
ChatGPT背后的算力博弈,中国企业亟待打破美国桎梏|英伟达|芯片|模型
英伟达车载芯片算力,英伟达tc技术,英伟达芯片供应,芯片 英伟达
文/孙鹏越
编辑/大风
如今AIGC市场一片鲜花着棉烈火烹油,不论是ChatGPT、AUTOGPT,或者国内的文心一言,市场乱烘烘你方唱罢我登场,不断登上热搜。
华西证券预测,全球AI软件市场规模将在2025年达到1260亿美元,2021年到2025年复合增长率为41.02%。
ChatGPT繁荣的背后,是堪称天文数字的算力支持。
据测算,AI训练服务器方面,单个大语言模型训练驱动AI训练服务器需求约2亿美元;AI推理服务器方面,如ChatGPT在初期便可带动推理服务器需求约45亿美元。
一时间,ChatGPT们层出不穷,而它们背后的AI服务器赛道也开始随之水涨船高。
算力作为大模型的核心引擎,它的计算公式很简单:有多少枚GPU芯片就能产生多大的算力,高端GPU芯片的数量,能直接影响算力的大小。
ChatGPT所需要的算力并不是固定的,反而是逐次递增。ChatGPT越聪明,背后的代价是所需算力越来越多。
据媒体推测,GPT-3训练成本预计在500万美元/次,GPT-3模型需花费训练成本约140万美元,Google的PaLM模型需花费训练成本约1120万美元。
据微软高管透露,为ChatGPT提供算力支持的AI超级计算机,是微软在2019年投资10亿美元建造的一台大型顶尖超级计算机,配备了数万个英伟达A100 GPU,还配备了60多个数据中心总共部署了几十万个英伟达GPU辅助。
为了满足与日俱增的ChatGPT算力需求,微软宣布将推出基于英伟达最新旗舰芯片H100 GPU和英伟达【【微信】】网络互连技术,推出Azure可大规模扩展的AI虚拟机系列,以显著加速AI模型的开发。
看上去,ChatGPT的背后就是满篇的英伟达、英伟达和英伟达。
实际上,英伟达作为硬件霸主,不仅在消费级市场占据大部分市场,也是AI服务器芯片领域的头号选择。
物以稀为贵,目前英伟达的旗舰芯片H100,在一周时间涨价近7万元人民币,售价普遍高达30万元左右;次旗舰A100芯片在短短三个月多时间里,从6万元一路涨至9万元,涨幅超过50%。
不仅涨价买不到,甚至美国还禁止英伟达卖芯片。在去年8月,美国政府发布出口管制政策,禁止英伟达将A100、H100两款芯片售往中国。
为了不丢掉中国市场,又符合美国出口管制,英伟达随后推出“性能阉割版”A800、H800芯片。但这两款芯片同样被供不应求的市场一抢而空,价格也随之水涨船高。
以百度阿里腾讯为首,国内大部分互联网公司都已经宣布进军大模型。市场统计,从ChatGPT之后,中国年内即将推出的大模型数量已超10个。
如果想要达到ChatGPT的水准,至少需要3000枚A100芯片,以9万/枚的价格来算就是2.7亿人民币才能完成一个大模型部署;10个大模型就需要3万枚A100芯片,27亿人民币。
加上后期训练成本,所需要的芯片更是天文数字。但按照目前英伟达的交货时间来看,想要买到足够的芯片,可不是一件容易的事情。
恍惚间,矿卡时代又再次来临。
在前些年虚拟货币火热的时候,作为挖矿必备的显卡提供商,英伟达几年时间大赚特赚了48亿美元。如今又靠着ChatGPT活出第二世,让历史再次重演。
面对市场需求激增,借AI浪潮翻身的英伟达很鸡贼的推出“算力租赁”服务。
3月21日,2023年GTC大会上,英伟达创始人兼首席执行官黄仁勋推出N【【微信】】?,可以为企业提供训练生成式AI高级模型所需的基础设施和软件。DGX Cloud每个实例配有8个H100或A100 80GB GPU,企业可以“云租赁”的形式按月租用DGX Cloud集群,价格为每实例3.7万美元/月起。
英伟达真的没有替代品吗?为什么企业宁愿选择租赁,也不选择其他GPU芯片商?
IDC数据显示,国内GPU服务器在2021年占国内服务器市场规模的比例超过88.4%,使用英伟达的产品占比超80%。
AI大模型所需要的芯片在处理信息的精细度和算力速度要求更高,在超算领域,双精度浮点计算能力FP64是进行高算力计算的硬性指标。而英伟达的H100、A100是目前唯一具备这些能力的芯片。
美国卡脖子的并不只有英伟达芯片的售卖,从技术、设备、材料都限制中国企业的研发。但在美国的重重限制下,中国企业仍然顶着压力跑出几匹黑马。
根据IDC最新发布的《中国加速计算市场(2021年下半年)跟踪报告》,2021年全年中国AI服务器市场规模达350.3亿元,同比增长68.6%。
在企业级GPU芯片领域,中国厂商壁仞科技在2022年推出“BR100”芯片、天数智芯推出了“智铠100”芯片、寒武纪推出了“思元270”芯片。
其中壁仞科技称,BR100拥有全球最高算力,峰值算力达到了市场在售旗舰产品的三倍以上,16位浮点算力达到1000T以上、8位定点算力达到2000T以上,单芯片峰值算力达到PFLOPS级别。
虽然数据良好,但缺少至关重要的处理FP64的能力,依然无法完全取代英伟达H100、A100俩兄弟。
并且,英伟达使用的CUDA平台早已成为应用最为广泛的AI开发生态系统,只支持英伟达的Tesla架构GPU,在现阶段根本无法用国产芯片取代。
虽然中国芯片厂商正在对GPU芯片领域奋起直追,但技术差距和美国卡脖子仍是关键性问题,还需要一段时间的努力。
借着大模型东风一路上扬的不止AI服务器和GPU芯片,还有储存器市场。
ChatGPT的运行条件包括训练数据、模型算法和高算力,其中高算力的底层基础设施是完成对海量数据、训练的基础。
最显而易见的特点就是ChatGPT经历数次迭代之后,参数量从1.17亿增加到1750亿,近乎两千倍的增长,也给计算存储带来极大的挑战。
AI新时代开启,预计全球数据生成、储存、处理量将呈等比级数增长,存储器将显著受益。而计算存储是ChatGPT的重要基石,随着阿里、百度等科技巨头类ChatGPT项目入局,整体计算存储市场需求将进一步快速提升。
随着AIGC持续火热,北京、上海、广州等数字经济发达地区也出台了政策推进智算中心建设。比如,北京市提出“新建一批计算型数据中心和人工智能算力中心,到2023年,培育成为人工智能算力枢纽”;上海市提出“布局建设一批具有高性能、高吞吐的人工智能算力中心,推动公共算力服务平台建设”等。
而各行各业都将面临着ChatGPT的洗礼,在新一轮人工智能的浪潮下,和AI相关的行业将会迎来广阔的市场空间。
而中国企业也势必会冲破美国掣肘,打破不公平的桎梏。