庆云古诗词

庆云古诗词

Azure OpenAI Service models

互联资讯 0

淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】


  • Article

Azure OpenAI pro【【微信】】erent models, grouped by family and capability. A model family typically associates models by their intended task. The following table describes model families currently a【【微信】】I. Not all models are a【【微信】】 currently. Refer to the model capability table in this article for a full breakdown.

Model family Description
GPT-4 A set of models that impro【【微信】】.5 and can understand 【【微信】】 as generate natural language and code. These models are currently in preview.
GPT-3 A series of models that can understand and generate natural language. This includes the new ChatGPT model (preview).
Codex A series of models that can understand and generate code, including translating natural language to code.
Embeddings A set of models that can understand and use embeddings. An embedding is a special format of data representation that can be easily utilized by machine learning models and algorithms. The embedding is an information dense representation of the semantic meaning of a piece of text. Currently, we offer three families of Embeddings models for different functionalities: similarity, text search, and code search.

Each model family has a series of models that are further distinguished by capability. These capabilities are typically identified by names, and the alphabetical order of these names generally signifies the relati【【微信】】f that model within a given model family. For example, GPT-3 models use names such as Ada, Babbage, Curie, and Da【【微信】】ive capability and cost. Da【【微信】】d more expensive than Curie, which in turn is more capable and more expensi【【微信】】, and so on.

Note

Any task that can be performed by a less capable model like Ada can be performed by a more capable model like Curie or Davinci.

【【微信】】s typically correspond to the following standard naming con【【微信】】:

Element Description
The model capability of the model. For example, GPT-3 models uses , while Codex models use .
The relati【【微信】】. For example, GPT-3 models include , , , and .
(Embeddings models only) The input type of the embedding supported by the model. For example, text search embedding models support and .
The 【【微信】】he model.

For example, our most powerful GPT-3 model is called , while our most powerful Codex model is called .

The older 【【微信】】s named , , , and that don't follow the standard naming con【【微信】】 are primarily intended for fine tuning. For more information, see Learn how to customize a model for your application.

You can get a list of models that are a【【微信】】ence and fine-tuning by your Azure OpenAI resource by using the Models List API.

We recommend starting with the most capable model in a model family to confirm whether the model capabilities meet your re【【微信】】. Then you can stay with that model or mo【【微信】】apability and cost, optimizing around that model's capabilities.

GPT-4 can sol【【微信】】ith greater accuracy than any of OpenAI's pre【【微信】】. Like gpt-35-turbo, GPT-4 is optimized for chat but works well for traditional completions tasks.

These models are currently in preview. 【【微信】】, existing Azure OpenAI customers can apply by filling out this form.

The supports 8192 max inpu【【微信】】 and the supports up to 32,768 tokens.

The GPT-3 models can understand and generate natural language. The ser【【微信】】apabilities, each with different le【【微信】】uitable for different tasks. Davinci is the most capable model, while Ada is the fastest. In the order of greater to lesser capability, the models are:

While Davinci is the most capable, the other models pro【【微信】】vantages. Our recommendation is for users to start with Da【【微信】】ing, because it produces the best results and 【【微信】】 Azure OpenAI can provide. Once you ha【【微信】】, you can then optimize your model choice with the best latency/performance balance for your application.

Davinci is the most capable model and can perform any task the other models can perform, often with less instruction. For applications re【【微信】】g of the content, like summarization for a specific audience and creati【【微信】】, Da【【微信】】 results. The increased capabilities pro【【微信】】e more compute resources, so Da【【微信】】't as fast as other models.

Another area where Da【【微信】】standing the intent of text. Da【【微信】】lving many kinds of logic problems and explaining the moti【【微信】】. Davinci has been able to solve some of the most challenging AI problems in【【微信】】t.

Use for: Complex intent, cause and effect, summarization for audience

Curie is powerful, yet fast. While Da【【微信】】t comes to analyzing complicated text, Curie is capable for many nuanced tasks like sentiment classification and summarization. Curie is also good at answering 【【微信】】ng Q&A and as a general ser【【微信】】.

Use for: Language translation, complex classification, text sentiment, summarization

Babbage can perform straightforward tasks like simple classification. It’s also capable when it comes to semantic search, ranking how well documents match up with search 【【微信】】.

Use for: Moderate classification, semantic search classification

Ada is usually the fastest model and can perform tasks like parsing text, address correction and certain kinds of classification tasks that don’t re【【微信】】. Ada’s performance can often be impro【【微信】】ntext.

Use for: Parsing text, simple classification, address correction, keywords

The ChatGPT model (gpt-35-turbo) is a language model designed for con【【微信】】s and the model behaves differently than pre【【微信】】. Pre【【微信】】 were text-in and text-out, meaning they accepted a prompt string and returned a completion to append to the prompt. However, 【【微信】】versation-in and message-out. The model expects a prompt string formatted in a specific chat-like transcript format, and returns a completion that represents a model-written message in the chat.

To learn more about the ChatGPT model and how to interact with the Chat API check out our in-depth how-to.

The Codex models are descendants of our base GPT-3 models that can understand and generate code. Their training data contains both natural language and billions of lines of public code from GitHub.

They’re most capable in Python and proficient in o【【微信】】, including C#, Ja【【微信】】, Go, Perl, PHP, Ruby, Swift, TypeScript, SQL, 【【微信】】. In the order of greater to lesser capability, the Codex models are:

Similar to GPT-3, Davinci is the most capable Codex model and can perform any task the other models can perform, often with less instruction. For applications re【【微信】】g of the content, Da【【微信】】 results. Greater capabilities re【【微信】】 Da【【微信】】't as fast as other models.

Cushman is powerful, yet fast. While Da【【微信】】t comes to analyzing complicated tasks, Cushman is a capable model for many code generation tasks. Cushman typically runs faster and cheaper than Davinci, 【【微信】】.

Important

We strongly recommend using . This model/【【微信】】y with OpenAI's . To learn more about the impro【【微信】】 model, please refer to OpenAI's blog post. E【【微信】】 using Version 1 you should migrate to 【【微信】】age of the latest weights/updated token limit. 【【微信】】re not interchangeable, so document embedding and document search must be done using the same 【【微信】】.

Currently, we offer three families of Embeddings models for different functionalities:

  • Similarity
  • Text search
  • Code search

Each family includes models across a range of capability. The following list indicates the length of the numerical 【【微信】】ervice, based on model capability:

  • Ada: 1024 dimensions
  • Babbage: 2048 dimensions
  • Curie: 4096 dimensions
  • Davinci: 12288 dimensions

Davinci is the most capable, but is slower and more expensi【【微信】】. Ada is the least capable, but is both faster and cheaper.

These models are good at capturing semantic similarity between two or more pieces of text.

Use cases Models
Clustering, regression, anomaly detection, visualization

These models help measure whether long documents are rele【【微信】】ery. There are two input types supported by this family: , for embedding the documents to be retrieved, and , 【【微信】】h query.

Use cases Models
Search, context relevance, 【【微信】】

Similar to text search embedding models, there are two input types supported by this family: , for embedding code snippets to be retrieved, and , 【【微信】】anguage search 【【微信】】.

Use cases Models
Code search and relevance

When using our embeddings models, keep in mind their limitations and risks.

These models can be used with Completion API re【【微信】】. is the only model that can be used with both Completion API re【【微信】】letion API.

国内ai芯片公司排名寒武纪 寒武纪科技裁员

全球ai芯片公司排行2020,中国ai芯片初创公司,ai芯片巨头,中国ai芯片公司

受益于ChatGPT概念,“AI芯片第一股”寒武纪股价不断上涨。近日,一起有关裁员的爆料将寒武纪再推上了话题中心。有用户在脉脉上发布声明称,遭到了寒武纪“无N+1式裁员”,该帖迅速激起千层浪。接连有用户站出来进行多向解读。除了“无N+1式裁员”,还有人透露寒武纪此番裁员“应届生比例高达80%”“不给年终奖、单方裁员”。

一位寒武纪员工向南都记者透露,据他所知,裁员确实发生了,留下的员工中部分小组的年终奖存在不同程度的缩减,而他身边的应届生中被留下来的确实不多,比例是否达到80%则不能确定,此次裁员应该已经波及了上百人。

 

无“N+1”、“应届生裁员高达80%”?人力资源总监亲自下场回应 

近日,有用户在职场社交平台脉脉上实名声明称,“AI芯片第一股”寒武纪今年会进行无“N+1”式的裁员。“寒武纪今年会裁员,无n+1。没被裁的,奖金和涨薪大幅缩水。硬件继续招聘少数岗位,软件几乎停止招聘,上头希望全公司人数控制在600以内。”目前,“传寒武纪单解部门员工,当事人自述将维权”话题已登上该平台热榜第四位。

随后,北京中科寒武纪科技有限公司HRD(人力资源总监)王海波在该帖后面亲自下场回应。他称“公司人数控制在600人以内”纯属造谣,公司此次裁员是针对绩效不达标的员工进行的,且“N+1”依然存在。除了回应“无N+1式裁员”,王海波的身影还“活跃”在用户爆料“不给年终奖、单方裁员”“应届生被裁比例高达80%”的帖子下面。

一位寒武纪员工向南都记者透露,据他了解,此次裁员应该才刚开始,各个城市的部门都在裁员,目前应该有上百人。而针对裁员的细节,他还身边的应届生中被留下来的确实不多,比例是否达到80%则不能确定,走掉的同事属于软件部门较多。

至于留下来的同事,该员工透露,部分小组的年终奖没有缩减,但确实也如帖子中所说,有部分小组年终奖存在不同程度的缩减;而涨薪方面目前还没有聊到。“按照往年,涨薪是一年谈两次,上半年一般是和年终一起说,但这次谈年终奖时没有提到涨薪的事情,应该是要推迟。”在备受关注的“n+1”问题上,他透露他知道的同事都有“n+1”,但部分同事确实没有年终奖,其他方面的赔偿也没有听到过。

有用户在该话题中解读了寒武纪裁员的细节。在该用户看来,“营收不利”“科创板上市后五年内需盈利”是裁员的重要原因。接着该用户还透露了与首位爆料者相符的细节,即软件部门确实是缩减人员的重灾区。“在外部客户业务增长乏力,甚至失去外部客户的情况下,寒武纪软件栈通过以前的加班加点开发基本稳定,寒武纪裁掉了相当一部分软件开发人员,据说裁掉了35%-40%的测试人员。”

 

 “拒绝三连”与ChatGPT“划清界限”公司历年研发费用远超营收

受益于近期大火的ChatGPT概念,寒武纪股价在2023年不断上涨,上一个股票收盘日(4月21日),寒武纪股价一度冲到248元,市值达1028.3亿元。

但在ChatGPT这件事上,寒武纪已经给出了多轮“否定”。3月26日,寒武纪发布公告称,公司不直接从事人工智能最终应用产品(例如类ChatGPT应用)的开发和销售;随后寒武纪又回应网传百度“文心一言”已使用公司产品的市场传闻,称尚未与“文心一言”项目开展相关合作;4月21日,在连续两个交易日内(2023年4月19日、4月20日)股票收盘价格涨幅偏离值累计达30%时,寒武纪又发布股票交易异常波动公告,称注意到ChatGPT等AIGC类话题近期引发大量关注,但公司不直接从事人工智能最终应用产品(例如类ChatGPT应用)的开发和销售,可谓是“拒绝三连”。

在浙江大学计算机科学与技术学院副教授金小刚看来,ChatGPT爆火对寒武纪等AI算力公司产生的正向效应会滞后出现。“尽管ChatGPT为人工智能相关公司、特别是算力有关的芯片公司带来利好,但基于大语言模型落地应用还处于探索阶段,加之国内大模型并未进入成熟期,这对寒武纪这样的AI算力公司产生的正向效应估计会有滞后。”

作为一家拥有硬科技赛道、中科院学霸创业等爆款故事元素的公司,寒武纪一直被业内以及股市看好。但其财报显示,自2017年公布财务数据以来,寒武纪就一直陷于亏损中,而近年来其亏损甚至在持续扩大。财报披露,2017年-2021年寒武纪亏损数额分别为3.807亿元、0.41亿元、11.79亿元、4.35亿元、8.25亿元。而近日发布的业绩快报显示,公司2022年度归属于母公司所有者的净利润预计将出现亏损,归属于母公司所有者的净利润预计亏损10.35亿元到12.65亿元。较上年同期相比,亏损扩大25.46%到53.34%。

在公司的投入端,研发费用每年都占据较高水平。财报显示,寒武纪2019年、2020年与2021年的研发费用分别为5.43亿、7.68亿和11.36亿,但其同期营收仅为4.44亿、4.59亿和7.21亿,其研发投入远远超过其营业收入。

此外财报显示,在研发费用中,研发人员的薪酬又占了大头。寒武纪2022年半年报显示,公司截至2022年6月末研发人员数量达1207人,占公司总人数比例高达80.04%,报告期内研发人员的平均薪酬为30.9万。

浙江大学计算机科学与技术学院副教授金小刚表示,寒武纪作为人工智能芯片公司、初创公司,长期投入大量研发成本却又不能形成盈利,企业的营收压力也非常大。他真心期待中国的经济环境复苏,也希望企业能加强与员工沟通,探寻更加合理的方案一起渡过难关。 

采写:南都记者 林文琪

关于本站

Copyright © 2023 欢迎来到我的小站 备案号:粤ICP备2020117555号 |淘宝互助 |隋唐演义 | 名诗名词 | 淘宝优惠

联系我们

合作或咨询可通过如下方式:

QQ:

邮箱:

关注我们

庆云古诗词
Model ID Base model Regions Fine-Tuning Regions Max Request (tokens) Training Data (up to)
ada N/A South Central US, West Europe 2 2,049 Oct 2019
text-ada-001 East US, South Central US, West Europe N/A 2,049 Oct 2019
babbage N/A South Central US, West Europe2 2,049 Oct 2019
text-babbage-001 East US, South Central US, West Europe N/A 2,049 Oct 2019
curie N/A South Central US, West Europe2 2,049 Oct 2019
text-curie-001 East US, South Central US, West Europe N/A 2,049 Oct 2019
davinci1 N/A Currently unavailable 2,049 Oct 2019
text-davinci-001 South Central US, West Europe